Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition
نویسندگان
چکیده
Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS) data) and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR) spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF) and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR) is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE) of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.
منابع مشابه
Using a field radiometer to estimate instantaneous sky clearness
Reflectance measurements of crop plants and canopies show promise for guiding within-season, variable-rate nitrogen (N) application. Most research results have been obtained around solar noon with clear skies. However, for practical application, the system must work under cloudy skies or away from solar noon. The objective of this work was to assess the effect of cloud conditions on reflectance...
متن کاملSpectral Reconstruction of Blacks and Whites by Using the Statistical Colorants
In this paper, the spectral dimensions of two sets of samples including 457 black and 84 white fabrics are compared. White fabrics are treated with variety of fluorescent whitening agents and the blacks are fabrics that dyed with different combinations of suitable dyes and pigments. In this way, the reflectance spectra of blacks as well as the total radiance factors of whites are compressed in ...
متن کاملNet Radiation Estimated from the FY-2D Data over the Source Region of the Yellow River
Numerous studies have developed algorithms for estimating the net radiation by satellite remote sensing data obtained under clear sky conditions using polar orbiting meteorological satellite. However, estimating net radiation under cloudy sky conditions using geostationary meteorological satellites with remote sensing sensors remains a significant challenge. In this paper, we developed algorith...
متن کاملRetrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data
Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic informatio...
متن کاملValidation of an UV inversion algorithm using satellite and surface measurements
Ultraviolet radiation in the spectral region between 280 and 315 nm (often referred to as UV-B) is harmful to living organisms. Satellite-based estimation of surface UV-B supplements the sparsely distributed ground-based UV-B monitoring networks. This study is concerned with validation of an inversion algorithm [Li et al., this issue] for retrieving spectrally integrated UV-B (no spectral weigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016